Generalization of Zernike polynomials for regular portions of circles and ellipses.

نویسندگان

  • Rafael Navarro
  • José L López
  • José A Díaz
  • Ester Pérez Sinusía
چکیده

Zernike polynomials are commonly used to represent the wavefront phase on circular optical apertures, since they form a complete and orthonormal basis on the unit circle. Here, we present a generalization of this Zernike basis for a variety of important optical apertures. On the contrary to ad hoc solutions, most of them based on the Gram-Schmidt orthonormalization method, here we apply the diffeomorphism (mapping that has a differentiable inverse mapping) that transforms the unit circle into an angular sector of an elliptical annulus. In this way, other apertures, such as ellipses, rings, angular sectors, etc. are also included as particular cases. This generalization, based on in-plane warping of the basis functions, provides a unique solution and what is more important, it guarantees a reasonable level of invariance of the mathematical properties and the physical meaning of the initial basis functions. Both, the general form and the explicit expressions for most common, elliptical and annular apertures are provided.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Use of Zernike Polynomials and SPGD Algorithm for Measuring the Reflected Wavefronts from the Lens Surfaces

Recently, we have demonstrated a new and efficient method to simultaneously reconstruct two unknown interfering wavefronts. A three-dimensional interference pattern was analyzed and then Zernike polynomials and the stochastic parallel gradient descent algorithm were used to expand and calculate wavefronts. In this paper, as one of the applications of this method, the reflected wavefronts from t...

متن کامل

Naive Introduction to Algebraic Geometry: the Geometry of Rings

I. BASIC TOOL: RATIONAL PARAMETRIZATION Algebraic geometry is a generalization of analytic geometry the familiar study of lines, planes, circles, parabolas, ellipses, hyperbolas, and their 3 dimensional versions: spheres, cones, hyperboloids, ellipsoids, and hyperbolic surfaces. The essential common property these all have is that they are defined by polynomials. This is the defining characteri...

متن کامل

Optimal designs for statistical analysis with Zernike polynomials

The Zernike polynomials arise in several applications such as optical metrology or image analysis on a circular domain. In the present paper we determine optimal designs for regression models which are represented by expansions in terms of Zernike polynomials. We consider two estimation methods for the coefficients in these models and determine the corresponding optimal designs. The first one i...

متن کامل

Ellipses, near Ellipses, and Harmonic Möbius Transformations

It is shown that an analytic function taking circles to ellipses must be a Möbius transformation. It then follows that a harmonic mapping taking circles to ellipses is a harmonic Möbius transformation. Analytic Möbius transformations take circles to circles. This is their most basic, most celebrated geometric property. We add the adjective ‘analytic’ because in a previous paper [1] we introduce...

متن کامل

Some compact generalization of inequalities for polynomials with prescribed zeros

‎Let $p(z)=z^s h(z)$ where $h(z)$ is a polynomial‎ ‎of degree at most $n-s$ having all its zeros in $|z|geq k$ or in $|z|leq k$‎. ‎In this paper we obtain some new results about the dependence of $|p(Rz)|$ on $|p(rz)| $ for $r^2leq rRleq k^2$‎, ‎$k^2 leq rRleq R^2$ and for $Rleq r leq k$‎. ‎Our results refine and generalize certain well-known polynomial inequalities‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Optics express

دوره 22 18  شماره 

صفحات  -

تاریخ انتشار 2014